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with asymptotic freedom
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Received 1 November 1999

Abstract. The part of the nonlinear term in the Navier–Stokes equation which represents coupling
to the small-scale modes may be averaged out by introducing a weak conditional average with
asymptotic freedom in wavenumber. A residual deterministic part, while important for individual
realizations, makes a negligible contribution to the renormalization of the dissipation rate. This is
because the full ensemble average, needed to establish the energy balance, relaxes the constraint
on the conditional average.

The application of renormalization group methods to dynamical problems in microscopic
physics requires an average over small scales in which large scales are held fixed [1].
Unfortunately, the corresponding procedure for classical nonlinear systems, such as Navier–
Stokes turbulence, is impossible,in principle, because of the deterministic nature of such
systems. Recently, it has been proposed that the chaotic nature of turbulence may justify the
use of an approximate conditional average [2]. In this paper we argue that the conditional
elimination of a band of high-wavenumber modes may be accomplished in terms of a
deterministic part, which has a coherent phase relation with the retained modes, and a random
part, which is asymptotically free and may be averaged out with the introduction of an effective
viscosity. The reduction of the number of modes takes place at a constant rate of energy
dissipation, and it is further argued that the renormalization of this quantity can be adequately
represented by the incoherent part only. This is because the full ensemble average, needed for
the spectral energy balance, tends to ‘lift’ the constraint on the conditional average.

We consider incompressible fluid turbulence, as governed by the solenoidal Navier–Stokes
equation (NSE)

(∂t + ν0k
2)uα(k, t) = Mαβγ (k)

∫
d3j uβ(j, t)uγ (k − j, t) (1)

whereν0 is the kinematic viscosity of the fluid,

Mαβγ (k) = (2i)−1[kβDαγ (k) + kγDαβ(k)] (2)

and the projectorDαβ(k) is expressed in terms of the Kronecker deltaδαβ as

Dαβ(k) = δαβ − kαkβ |k|−2. (3)
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In order to pose a specific problem, we restrict our attention to stationary, isotropic,
homogeneous turbulence, with dissipation rateε and zero mean velocity. We also introduce
an upper cutoff wavenumberKmax, which is defined through the dissipation integral

ε =
∫ ∞

0
2ν0k

2E(k) dk '
∫ Kmax

0
2ν0k

2E(k) dk (4)

whereE(k) is the energy spectrum, so ensuring thatKmax is of the same order of magnitude
as the Kolmogorov dissipation wavenumber.

We then filter the velocity field at|k| ≡ k = Kc, where 0< Kc < Kmax, according to

uα(k, t) =
{
u−α (k, t) for 0< k < Kc

u+
α(k, t) for Kc < k < Kmax.

(5)

The NSE may be decomposed using (5), to give

(∂t + ν0k
2)u−k = M−k (u−j u−k−j + 2u−j u

+
k−j + u+

j u
+
k−j ) (6)

(∂t + ν0k
2)u+

k = M+
k (u
−
j u
−
k−j + 2u−j u

+
k−j + u+

j u
+
k−j ) (7)

where, for simplicity, all vector indices and independent variables are contracted into a single
subscript.

In order to obtain an expression for the average effect of the high-wavenumber modes
upon a particular low-wavenumber mode, we need to average out theu+ whilst holding theu−

constant. This requires aconditional average〈·〉c, such that

〈u−α (k, t)〉c = u−α (k, t). (8)

This is theonly rigorous property we can attribute to the conditional average, and it should
also be noted that it is vital to distinguish between this operation and that of a filtered ensemble
average.

To establish the statistical properties ofuα(k, t) we consider an ensembleW consisting
of the set ofM time-independent realizations{W(i)

α (k)}, each realization† being labelled by
an integeri. Subject to certain weak conditions, the ensemble average is

〈uα(k, t)〉 = lim
M→∞

1

M

M∑
i=1

W(i)
α (k) = Ūα(k) (9)

whereŪα(k) is the time average ofuα(k, t). This procedure can then be extended to any well
behaved functional,F [uα(k, t)], thus:

〈F [uα(k, t)]〉 = lim
M→∞

1

M

M∑
i=1

F [W(i)
α (k)]. (10)

Now we consider how to perform aconditional average. To do this, we first select a
subensemble,Y ≡ {Y (i)α (k)} ⊂W, and choose the members of thisbiasedsubensemble to be
thoseN (N 6 M) members ofW satisfying the criterion

lim
δ→0

(max|θ−(k)W(i)
α (k)− u−α (k, t1)| 6 δ) (11)

where t1 is some fixed time andθ−(k) = 1 for 0 < k < Kc, and zero otherwise. The
conditional average is then obtained by generalizing (9) and (10) to the biased subensemble,
namely,

〈uα(k, t)〉c = lim
N→∞

1

N

N∑
i=1

Y (i)α (k) (12)

† Note that this differs from the formulation in [2], where each realization was time-dependent.
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and

〈F [uα(k, t)]〉c = lim
N→∞

1

N

N∑
i=1

F [Y (i)α (k)]. (13)

It follows by construction that (8) holds, since from (11) and (12)

〈u−α (k, t)〉c = lim
N→∞

1

N
[Nu−α (k, t)] = u−α (k, t). (14)

The difficulty now facing us lies in the nature of the subensemble, which is an example
of deterministic chaos. This can be seen if we consider two extreme scenarios for the
behaviour ofu+ under the conditional average. Firstly, if we assume that the subensemble
is strictly deterministic, then in this instanceu+

k is fully determined by prescribingu−k .
Accordingly, equation (8) implies that〈u−j u−k−j 〉c = u−j u

−
k−j , 〈u−j u+

k−j 〉c = u−j u
+
k−j and

〈u+
j u

+
k−j 〉c = u+

j u
+
k−j . Thus, the low-pass filtered NSE, equation (6), reduces back to itself

under the conditional average. Secondly, if we assume that the subensemble is purely random,
it follows that in this case,u+

k is independent ofu−k . Hence, applying the conditional average
to the low-pass filtered NSE, we find

(∂t + ν0k
2)u−k = M−k u−j u−k−j

theu−j u
+
k−j term being zero since the ensemble average ofu+ is zero, whilst theu+

j u
+
k−j term

is zero due to homogeneity. Thus in this scenario it appears that there isnoeffect of nonlinear
coupling.

In reality we are faced with a situation somewhere between these two extremes, and so we
replace our criterion for members of the biased subensemble, equation (11), which is equivalent
to the first of these situations ifδ = 0, by the less precise criterion

max|θ−(k)W(i)
α (k)− u−α (k, t1)| 6 ξ (15)

where, in general,ξ is of the order of the turbulent velocities involved.
To obtain a non-trivial conditional average we must now identify those circumstances in

which ξ may be neglected as being, in some sense, small. A measure of the ‘smallness ofξ ’
can be identified by constructing the subensemble as

W(i)
α (k) = u−α (k, t1) + φ(i)α (k, t1) (16)

wherei is any label satisfying (15). If we then further restrict the subensemble to be such that
the set{φ(i)α (k, t1)} satisfies (8), we find that

〈u−j u−k−j 〉c = u−j u−k−j + 〈φjφk−j 〉c. (17)

Thus in order to maintain form invariance of the NSE under conditional averaging, we require

〈φjφk−j 〉c → 0 (18)

in some limit. This is our criterion for the smallness ofξ .
If we further suppose that chaos and unpredictability are local characteristics of turbulence,

and there is support for such a view [3, 4], then ifKc andKmax are sufficiently far apart we
might expect, due to the development of unpredictability ask is increased aboveKc, that the
effect of the constraint given in equation (15) would die away, such that

lim
k→Kmax

〈u+
α(k, t)〉c → 〈u+

α(Kmax, t)〉. (19)

We refer to this property asasymptotic freedom. In order to extend this concept to higher-order
moments, we introduce the followinghypothesis of local chaos:
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‘For sufficiently large Reynolds’ number and correspondingKmax, there exists a cut-
off wavenumberKc < Kmax, such that a mixed conditional moment involvingp
low-wavenumber andr high-wavenumber modes takes the limiting form:

lim
ξ→0
〈u−α (k1, t)u

−
β (k2, t) . . . u

−
γ (kp, t)u

+
δ (kp+1, t)u

+
ε (kp+2, t) . . . u

+
σ (kp+r , t)〉c

→ u−α (k1, t)u
−
β (k2, t) . . . u

−
γ (kp, t)

× lim
{·}→Kmax

〈u+
δ (kp+1, t)u

+
ε (kp+2, t) . . . u

+
σ (kp+r , t)〉 (20)

where lim{·}→Kmax means take the limit for all wavevector arguments of theu+ modes,
with the condition of equation (18) satisfied as a corollary’.

This provides our definition of an asymptotic conditional average and we should emphasize that
the numerical simulations of Machiels [4] provide independent verification of this behaviour.
It may be used to evaluate all terms involving mixed products ofu− with u+. For example,

lim
ξ→0
〈u−j u+

k−j 〉c = u−j lim
{·}→Kmax

〈u+
k−j 〉 = 0 (21)

since〈u+
α(k, t)〉 = 0. Note also, that the hypothesis as stated is more general than is necessary,

since we shall only need to consider products containing at most twou− modes.
If we then take the conditional average of the low-pass filtered NSE, equation (6), we

obtain

(∂t + ν0k
2)u−k = M−k {〈u−j u−k−j 〉c + 2〈u−j u+

k−j 〉c + 〈u+
j u

+
k−j 〉c} (22)

where the conditional average ofu−k on the left-hand side has been evaluated using (8). This
equation may be further rewritten as

(∂t + ν0k
2)u−k = M−k u−j u−k−j + S−(k|Kc) +M−k lim

ξ→0
〈u+
j u

+
k−j 〉c (23)

where

S−(k|Kc) = M−k
{
〈φ−j φ−k−j 〉c + 2〈u−j u+

k−j 〉c + 〈u+
j u

+
k−j 〉c − lim

ξ→0
〈u+
j u

+
k−j 〉c

}
. (24)

It should also be noted that the hypothesismust hold for Kc → 0, as in this instance
equation (22) reduces to the Reynolds equation, withuα(k, t)→ Ūα(k) as given by (9).

Our hypothesis does not explicitly tell us how evaluate the conditional average in (23),
which involves a non-trivial projection of a product ofu+ modes in the Hilbert space of the
u− modes, but we may use the high-pass filtered NSE, equation (7), to obtain a governing
equation for this quantity. To do this, we use (7) to write equations foru+

j andu+
k−j , multiply

these equations byu+
k−j andu+

j , respectively, add the resulting equations together, and then
take the conditional average. After some rearrangement of dummy variables, this gives

lim
ξ→0

(∂t + ν0j
2 + ν0|k − j|2)〈u+

j u
+
k−j 〉c = lim

ξ→0
2M+

j

×{〈u−p u−j−pu+
k−j 〉c + 2〈u−p u+

j−pu
+
k−j 〉c + 〈u+

pu
+
j−pu

+
k−j 〉c}. (25)

Applying the hypothesis as given by equation (20), it is easily seen that the first term on the
right-hand side of (25) is zero, since in the limit it involves the ensemble average ofu+

k , while
the second term gives rise to a term linear inu−k . The third term may be evaluated by iterating
the above procedure to form a dynamical equation for〈u+

pu
+
j−pu

+
k−j 〉c, which in turn gives rise

to higher-order moments.
In general, we can show that a similar pattern occurs for all higher-order moments involving

only products ofu+. That is, each such moment gives rise to a moment involving twou−modes,
which in general, has to be zero for consistency in its wavevector arguments, a term linear in
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u−k , and a moment involving onlyu+ modes of next higher order. Hence we may write the
general result

M−αβγ (k)
∫

d3j lim
ξ→0
〈u+
β(j, t)u

+
γ (k − j, t)〉c =

∫ t

−∞
ds A(k, t − s)u−α (k, s) (26)

whereA(k, t − s) has the form

A(k, t − s) =
∫

d3j exp[−(ν0j
2 + ν0|k − j|2)(t − s)]

×
{
4M−k M

+
j lim
{·}→Kmax

〈u+
j−pu

+
k−j 〉

+24M−k M
+
j L
−1
03M

+
p lim
{·}→Kmax

〈u+
p−qu

+
j−pu

+
k−j 〉 + · · ·

}
(27)

L03 ≡ ∂t + ν0p
2 + ν0|j − p|2 + ν0|k − j|2, and where higher-order terms are easily found by

induction. Thus, in all, equation (23) for the low-wavenumber modes may be written as

(∂t + ν0k
2)u−k −

∫ t

−∞
ds A(k, t − s)u−α (k, s) = M−k u−j u−k−j + S(k|Kc). (28)

In order to test the hypothesis, we make two approximations. First, we truncate the
expansion ofA(k, t) at lowest non-trivial order. This can be justified by the introduction of a
localReynolds number based on a length scaleK−1

c , the moment expansion being re-expressed
as a power series in this parameter. Making the truncation in (26) and (27) leaves us with the
expression

lim
ξ→0

M−αβγ (k) 〈u+
β(j, t)u

+
γ (k − j, t)〉c =

∫ t

−∞
ds exp[−(ν0j

2 + ν0|k − j|2)(t − s)]

× 4M−αβγ (k)M
+
βδε(j)

∫
d3p lim

{·}→Kmax

〈u+
ε (j − p, s)u+

γ (k − j, s)〉u−δ (k, s).
(29)

For stationary, homogeneous, and isotropic turbulence we may write

〈u+
ε (j − p, s)u+

γ (k − j, s)〉 = Q(|k − j|)Dεγ (k − j)δ(k − p) (30)

whereQ(k) is the spectral density andδ is the Dirac delta function. This leaves the question
of how to perform the time integral∫ t

−∞
ds exp[−(ν0j

2 + ν0|k − j|2)(t − s)]u−δ (k, s). (31)

To do this we change the variable of integration froms to T = t − s, expand the resultant
u−δ (k, t − T ) as a Taylor series aboutT = 0, and then truncate the expansion at zero order,
this approach being based upon the physical idea that theu− modes are slowly evolving on
timescales defined by the inverse ofν0j

2 + ν0|k − j|2.
We have investigated the validity of these two approximations using results from direct

numerical simulations performed on a 2563 grid, with Taylor–Reynolds numberRλ = 190. At
this resolution the simulations have a very limited inertial range (see [5, 6]), but nevertheless
they indicate that there is a range ofKc (Kc & 0.5Kmax) where both approximations give rise
to error terms of less than unity, and that the magnitude of these errors will decrease as we
increaseRλ to the large values where we may reasonably expect our hypothesis to hold.

With these approximations, the right-hand side of (26) is simple to evaluate, and we are
left with the final expression for the conditional average on the right-hand side of (23):

M−αβγ (k) lim
ξ→0
〈u+
β(j, t)u

+
γ (k − j, t)〉c

= 4M−αβγ (k)M
+
βδε(j) lim

|k−j|→Kmax

Q(|k − j|)Dεγ (k − j)
ν0j2 + ν0|k − j|2 u−δ (k, t) (32)
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which is linear inu−k , meaning that it may be interpreted in terms of an increment to the
viscosity.

In order to evaluate the limit, we make a first-order truncation of a Taylor series expansion
in wavenumber ofQ+ aboutKmax. In this way, we re-obtain the results previously obtained
using the two-field theory of McComb and Watt [7]. As they showed, a renormalization group
calculation based upon these equations gives a prediction for the Kolmogorov constant of
1.60± 0.01, in good agreement with experiment, for 0.55Kmax 6 Kc 6 0.75Kmax. This
calculation obtained the Kolmogorov exponent and pre-factor by assuming that the effective
viscosity and its increment scale in the same way (which is true at the fixed point) and that
the rate of energy transfer is renormalized. This latter assumption amounted, in our present
terminology, to the neglect ofS(k|Kc) in equation (23).

A new justification of this step can now be offered as follows. The equation for the energy
spectrum is obtained by multiplying the dynamical equation foru−α (k, t) by u−α (−k, t) and
then performing an average over the full ensemble. Thus the effect ofS(k|Kc) is just

〈S(k|Kc)u−α (−k, t)〉.
If we consider the form ofS(k|Kc) we see that each of the terms in the above expression
involves a conditional average. In evaluating such terms we perform a double summation,
firstly summing over all members with low-wavenumber modes close to a particular member
of the ensemble, and then repeating this summation for every member of the ensemble. Now,
the initial ensemble was constructed according to the principle of equala priori probabilities
but this is no longer necessarily true of the composite ensemble which we are now considering.
If it were true, then the terms making upS(k|Kc)would vanish identically for allKc. However,
in view of the results of the renormalization group calculations [7], it seems likely that the
contribution fromS(k|Kc) is small forKc in the range 0.55Kmax6 Kc 6 0.75Kmax. Thus, for
this range of cut-off wavenumbers, it would appear that the renormalization group calculation
of the effective viscosity [7] is valid in a heuristic sense.

Finally, it should be noted that this work does not suggest thatS(k|Kc) can be neglected in
equation (23), which is the governing equation for a single realization. However, it does suggest
that, having averaged out the chaotic part to yield an effective viscosity, one should consider
modelling the relationship ofS(k|Kc) to theu−k modes as predominantly deterministic. Work
along these lines will be the subject of a separate communication.
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